TABLE ERRATA

458.-Milton Abramowitz \& Irene A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, and all reprints to date.

In Section 25.4.45, on p. 890, the numerator of the formula for the weights associated with the Gauss-Laguerre quadrature formula should read x_{i} instead of $(n!)^{2} x_{i}$.

This correction is consistent with the form of the Laguerre polynomials adopted in Chapter 22 of this handbook and used in the computation of the weight factors in Table 25.9 on p. 923.

Josef Stein
Institute for Pure and Applied Physical Sciences
University of California at San Diego
La Jolla, California 92037
459.--W. S. ALDIS, "Tables for the solution of the equation $d^{2} y / d x^{2}+(1 / x) d y / d x-$ $\left(1+n^{2} / x^{2}\right) y=0$," Proc. Roy. Soc. London, v. 64, 1899, pp. 203-223.

Comparison of these tables with new, unpublished tables of Berger \& McAllister [1] has a revealed a number of errors in Aldis's values.

Thus, in Table II (p. 220) the following corrections in ending digits are required:

x	$K_{0}(x)$		x		$K_{1}(x)$	
	for	read		for	read	
11.0	$\ldots 6$	$\ldots 7$	9.0	$\ldots 382$	$\ldots 379$	
12.0	$\ldots 302$	$\ldots 311$	10.0	$\ldots .9$	$\ldots .8$	

In Table III (p. 221) the following changes are indicated:

x	$I_{0}(x)$		$I_{1}(x)$	
	for	read	for	read
8.0	.. 175	. . 177	. 228	. 219
9.0	. 845	... 846	. . 428	. . 429
10.0	.. 294	... 470	.. 247	. 341
11.0	.. 179	... 181	.. 818	.. 821
x	$K_{0}(x)$		$K_{1}(x)$	
	for	read	for	read
7.0	... 231	... 232	... 898	... 897
8.0	... 804	.. 815	. . 4984	.. 5001
9.0	... 458	... 459	... 453	... 452
10.0	... 066	... 168	... 874	.. 826
11.0	. 653	. 654	. 582	581

The discovery of errors in this table is particularly interesting in view of the relevant remark in the FMRC Index [2] that, "it seems probable that no error exists."
J. W. W.

1. B. S. Berger \& H. McAllister, A Table of the Modified Bessel Functions $K_{n}(x)$ and $I_{n}(x)$ to at Least 60 S for $n=0,1$ and $x=1,2, \ldots, 40$, ms. in UMT file. (See Math. Comp., v. 24, 1970, p. 488, RMT 34.)
2. A. Fletcher, J. C. P. Miller, L. Rosenhead \& L. J. Comrie, An Index of Mathematical Tables, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1962, Volume II, p. 783.
460.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Higher Transcendental Functions, v. I, McGraw-Hill Book Co., New York, 1953.
On p. 81, in Eq. (11) of Section 2.4 the second factor in the left member should read

$$
b^{2 v} F\left(-v, \frac{1}{2} \alpha-\frac{1}{2} \beta-\frac{1}{2} v ; 1+\frac{1}{2} \beta+\frac{1}{2} \alpha-\frac{1}{2} v ; a^{2} / b^{2}\right)
$$

instead of

$$
F\left(-v, \frac{1}{2} \alpha-\frac{1}{2} \beta-\frac{1}{2} v ; 1+\frac{1}{2} \beta+\frac{1}{2} \alpha-\frac{1}{2} v ; a^{2} / b^{2}\right) .
$$

H. Satoh

Department of Mathematics and Physics
Gunma University
Kiryu, Gunma, Japan
Editorial note: For notices of additional errata, see Math. Comp., v. 19, 1965, pp. 527-528, MTE
$\mathbf{3 7 4}$; v. 20, 1966, p. 641, MTE $\mathbf{4 0 0}$.
461.-W. Gröbner \& N. Hofreiter, Integraltafel, Erster Teil: Unbestimmte Integrale, Springer-Verlag, Wien, 1961. (First edition, 1949; second edition, 1957.)

On p. 133, in formula 334.3 c the denominator of the coefficient appearing in the summation on the right side should read $a^{2}+4 v^{2} b^{2}$, instead of $a^{4}+4 v^{2} b^{2}$.

Harry H. Denman
Department of Physics
Wayne State University
Detroit, Michigan 48202
462.-Donald E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley Publishing Co., Reading, Mass., 1969.
On p. 165, 1. 4, for π, read 2π, and in 1. 6, replace 31415926535898732 by 62831853071795865.

The author has communicated the following major corrections in Table 1 on p. 417: the entries 361 and 689 should be deleted and three additional entries, namely, 165,561 , and 645 , should be inserted.
J. W. W.
463.-H. Kober, Dictionary of Conformal Representations, Dover Publications, 1952.

On p. 197 the vertical line in the right figure is erroneously marked $u=0$ rather than $u=1 / 2$.

Henry E. Fettis

Aerospace Research Laboratories
Wright-Patterson Air Force Base
Ohio 45433
464.-W. Magnus, F. Oberhettinger \& R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, third edition, Springer-Verlag New York, Inc., New York, 1966.
On p. 56, line 7, the coefficient of the hypergeometric function

$$
{ }_{2} F_{1}\left(-\mu, \frac{\alpha-\beta-\mu}{2} ; 1+\frac{\alpha+\beta-\mu}{2} ; \frac{\alpha^{2}}{\lambda^{2}}\right)
$$

should read

$$
\frac{\lambda^{2 \mu}}{\Gamma\left(1+\frac{\beta-\alpha+\mu}{2}\right)}
$$

instead of

$$
\frac{1}{\Gamma\left(1+\frac{\beta-\alpha+\mu}{2}\right)} .
$$

H. Satoh

Editorial note: For notices of additional errors in this and earlier editions, see Math. Comp., v. 21, 1967, pp. 523-524, MTE 413 and MTE 414; v. 22, 1968, p. 909, MTE 430; v. 23, 1969, p. 471, MTE 440.
465.-C. A. Nichol, John L. Selfridge \& Lowry McKee, under the direction of

Richard V. Andree, A Table of Indices and Power Residues for All Primes and
Prime Powers Below 2000, W. W. Norton \& Co., New York, 1962.
In my review, RMT 72, Math. Comp., v. 17, 1963, pp. 463-464, of this very useful set of tables, I pointed out many defects in its format and printing. It is now noted that the 2 nd and 3 rd pages of the table for $P=1439$ are interchanged. (The pages are unnumbered.)

> D. S.
466.-Georg Vega, 10 Place Logarithms including Wolfram's Tables of Natural Logarithms. Reprint of the rare edition of 1794, G. E. Stechert \& Co., New York, 1946.

On p. 666, the final digit in Wolfram's 48D value of $\ln 2000$ should read 7, instead of 6 .

On p. 655 and p. 669, respectively, the 48D natural logarithms of 1087 and 2174, calculated by Wolfram, are entirely correct as printed, except for the known error of transposition of digits in the 29th and 30th decimal places of $\ln 1087$. This refutes last-digit changes of a unit in these logarithms proposed by C. R. Cosens, cited by R. C. Archibald in several places [1], [2], [3], and listed in the FMRC Index [4].

Accordingly, the 48D value of $\ln 1087$ as reproduced by J. T. Peters [5] with correction of the transpositional error is entirely free from error.

Rens

6371 Store-Jyndevad

Denmark

1. MTAC, v. 1, 1943, p. 57, MTE 7.
2. MTAC, v. 2, 1946, pp. 161-165, RMT 319.
3. R. C. Archibald, "New information concerning Isaac Wolfram's life and calculations," MTAC, v. 4, 1950, pp. 185-200.
4. A. Fletcher, J. C. P. Miller, L. Rosenhead \& L. J. Comrie, An Index of Mathematical Tables, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1962, Volume II, p. 929.
5. J. T. Peters, Zehnstellige Logarithmentafel, Erster Band, Zehnstellige Logarithmen der Zahlen von 1 bis 100,000 nebst einem Anhang Mathematischer Tafeln, Berlin, 1922. New, revised edition with English translations published in 1957 by Frederick Ungar Publishing Co., New York. (See p. 132 of the Appendix.)
